木質和其他生物纖維構成的植物細胞壁是生物燃料生產原料的主要形式。這些生物纖維經消化產生糖,再經發酵產生生物燃料。但是植物可以阻止被消化,例如植物細胞壁具有酰基化合物能阻止纖維轉化成糖,酰基還可以形成網絡使細胞壁異常強韌。美國能源部Brookhaven國家實驗室的科學家從擬南芥和白楊(Populus trichocarpa)中發現一個基因家族可以控制細胞壁-酰基的結合。通過調節這些基因,科學家可以使工程作物更容易生產生物燃料。 Chang-Jun Liu及同事觀察到一些基因對,它們與基因組中的臨近基因反向重疊。這些基因產生的RNA彼此結合形成分子Velcro,因此這對基因中的一個基因表達就會抑制它的搭檔。Liu認為研究這一反義調節機制將幫助科學家調節酰基產生。 推薦原始出處: Plant Molecular Biology doi:10.1007/s11103-009-9482-1 BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis : bioinformatics and gene expression Xiao-Hong Yu1, Jin-Ying Gou1 and Chang-Jun Liu1 (1) Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by “in silico” northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members’ evolutionary relationships and gene functions implicated in plant growth, development and metabolism. (責任編輯:Doctor001) |